Today – February 5th

- Intro Pick-up page of notes and physiology coloring sheet; warm-ups out; 7th per. – laptops/headphones out
- Advanced Get injury research & related materials out
- Weekend Check-In Reminders n' Stuff:
 - SLC On-Line Testing begins today!
 - CLUB MED meeting Weds. 9am room 1406
 - Teacher Offerings Wednesday
 - Job Shadow needs?

Today – February 5th

Introduction to Sports Medicine

- Semester Leadership Project Activities posted!
- Warm-Up: Physiology Review
- Lecture: Muscle Contraction Characteristics and Terminology

Advanced Sports Medicine

- One-on-One review of Semester
 - Leadership Projects
 - Continue research on assigned injury

Assigned Injuries

- Olivia Avulsion Fx of Ischial Tuberosity
- Alex Acute Compartment Syndrome
- Hansika Carpal Tunnel Syndrome
- Themi Meniscus Tear
- Elle ACL Tear/Rupture
- Kaitlyn SLAP Lesion
- Ishita Tib/Fib Fx Elshaday Femur Fx
 - Jade Achilles Tendon Rupture
 - Saadhvi Lis Franc Injury
 - Niharika UCL Tear/Rupture
 - Saanvi Ankle Dislocation/Fx
 - Sharon Unhappy Triad
 - Vrinda Rotator Cuff Tear

Warm-Up (No notes, no blanks)

Outline the steps/events of muscle contraction starting from an action potential arriving at the synaptic terminals of a motor neuron to the cocking of myosin heads into their resting position.

You may write and/or draw the steps/events!

Warm-Up Key

- 1. An action potential is sent down a motor neuron from the brain
- 2. Synaptic vesicles in the neuron release ACh into the synaptic cleft
- 3. ACh binds to **ligand-gated Na⁺channels**, opening the channels which allows Na⁺ to diffuse into the muscle fiber
- 4. Na⁺ diffuses until depolarization occurs and a new action potential is sent down the sarcolemma
- 5. The AP on the sarcolemma continues down the t-tubules, opening voltage-regulated Ca²⁺ channels in the adjacent terminal cisternae/sarcoplasmic reticulum
- 6. Calcium concentrations increase in the **sarcoplasm** and, thus, around the sarcomeres
- 7. Ca²⁺ in the sarcoplasm bind to the **troponin** on the thin filaments resulting in the exposure of the active sites under the **tropomyosin**
- 8. The myosin heads bind to the exposed active sites forming a "cross bridge"
- 9. Stored energy in the myosin head allows a **"power stroke"** of the hinge to move the thick filaments along the thin
- 10. ATP then binds to the myosin heads, the energy from which results in a "cocking" of the myosin head back to its resting position